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We study transport of a passive tracer particle in a time dependent turbulent
flow in the medium with positive molecular diffusivity. We show that there
exists then a probability measure equivalent to the underlying physical proba-
bility, corresponding to the Eulerian velocity field, under which the particle
Lagrangian velocity observations are stationary. As an application we derive the
existence of the Stokes drift and the effective diffusivity—the characteristics of
the long time behavior of the particle motion.
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1. INTRODUCTION

The simplest model of the passive tracer motion in a turbulent flow is given
by the Itô stochastic equation

˛dx(t)=u(t, x(t)) dt+`2o dw(t),
x(0)=0,

(1.1)

where u: R×Rd×WQ Rd, the so-called Eulerian velocity, is a stationary,
time-space strongly mixing, d-dimensional random field given over a
certain probability triple T0 :=(W,V, P) and w(t), t \ 0 is an independent
of it standard d-dimensional Brownian motion, given over T1 :=(S,A, W).
The parameter o > 0 characterizes the strength of the intrinsic molecular
diffussivity of the medium.

Long time, large scale behavior of the tracer particle can be studied by
considering the scaled trajectories

ex(t/eq) for a certain q > 0 and a parameter e° 1. (1.2)



This problem displays a very rich phenomena of possible trajectory behaviors
such as: Newtonian motions, diffusions, fractional diffusions and possibly
Levy flights, see refs. 1–6. Most of the available rigorous results, e.g., those
obtained by methods of homogenization theory, see ref. 7, are derived
under incompressibility assumption on the drift, i.e., Nx ·u(t, x) — 0. The
fundamental property, which renders the incompressible case tractable, is
the fact that the Lagrangian velocity process gt :=u(t, x(t)), t \ 0, is sta-
tionary, as it is well known since the work of Lumley, (8) and also ref. 9.
Stationarity of the Lagrangian process permits the extensive use of the
methods of the ergodic theory of Markov processes, see e.g., refs. 7, 10,
and 11.

In the compressible case this approach works when the invariant
measure is known to exists, i.e., one can find a probability measure Pg on
(W,V) such that

Pg éW[gt1+h ¥ A1,..., gtN+h ¥ AN]=Pg éW[gt1 ¥ A1,..., gtN ¥ AN]

for any 0 [ h, t1 < · · · < tN and Borel measurable A1,..., AN ¥B(Rd). Pg is
called regular if, in addition, it is equivalent to P, i.e., P[A]=0 iff
Pg[A]=0 and ergodic. The latter means that

(E) for any Borel subset A of C([0,+.); Rd) satisfying

Pg éW[[hh(g•) ¥ A]g[g• ¥ A]]=0

for any h \ 0 we have Pg éW[g•+h ¥ A]=0 or 1. Here g denotes the
symmetric difference of events and hh is the canonical shift on
C([0,+.); Rd).

When such a measure exists a simple application of the ergodic
theorem yields the law of large numbers for the particle motion, i.e.,

vg := lim
t ‘+.

x(t)
t

is a deterministic vector, also called the Stokes dirft. If one can show a suf-
ficient decay rate of the correlations of the Lagrangian velocity then

Dg := lim
t ‘+.

EM[(x(t)− vgt) é (x(t)− vgt)]
t

also exists and is called an effective diffusivity tensor of the flow. (12) We say
then that the tracer behavior is asymptotically diffusive. Here E, M denote
the means corresponding to both sources of randomness in (1.1).
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Unfortunately, due to the infinite dimensional character of the problem,
the existence of regular invariant measures is, in general, hard to prove except
for some special cases, e.g. when the Eulerian velocity is a gradient of a steady
(time independent) scalar potential field, i.e., u(x)=Nxf(x), x ¥ Rd and f( · )
is stationary, with Z=> exp {−f(0)} dP <+.. Then, the ‘‘Gibbs like’’
measurePg(dw) :=exp{−f(0, w)} dP/Z is invariant, see e.g., ref. 7.

Most of the available results concerning motions in general compres-
sible Eulerian velocity fields are limited to the case of slowly varying fields,
i.e., u(t, x)=ũ(t, e rx), where r > 0 is coupled with q of (1.2), e° 1, see e.g.,
refs. 13 and 14. The limit discounts then the spatial variation of the veloc-
ity, thus the analysis of the asymptotic behavior of trajectories can be then
done by the use of perturbative techniques, avoiding in this way the
problem of finding the invariant measure. In the case when the spatial and
temporal variables are fully coupled, i.e., r=0, the perturbation argument
fails. However, it is generally believed that the particle should still display a
diffusive behavior, provided that the Eulerian velocity field is sufficiently
strongly decorrelating in time, see ref. 12.

In the present article we set out to prove the existence of regular
invariant measures for Eulerian fields with fast temporal decorrelation
properties, see Theorem 2.1 below. We apply further this result to prove
the existence of the Stokes drift, Corollary 2.2. Finally, we establish, see
Theorem 2.3, the diffusive character of the fluctuations of the trajectory
around the mean motion. Namely, we show that the ratio of the mean
square displacement of the particle, after discounting the mean motion,
against time tends to a constant tensor (the so called effective diffusivity of
the medium).

The organization of the paper is as follows. In Section 2 we introduce
the notation and give precise formulation of the main results.

In Section 3 we give a construction of a regular invariant measure for
the Lagrangian environment process. Speaking in loose terms it is the
process that describes the environment viewed from the moving particle.
The existence of such a measure implies immediately the existence of the
Stokes drift, via the individual ergodic theorem.

The principal tool used in the course of the proof is an abstract
operator acting on the space of probability densities with respect to
measure P—the physical probability describing the statistics of the envi-
ronment. This operator, called here the transport operator is in some sense
dual to a temporal shift over an interval greater than or equal to the corre-
lation time of the Eulerian process, see (3.1). Yet, as it should be noted, the
two functionals of the environment that appear in the duality relation must
depend only on the future and the past of the Eulerian process corre-
spondingly, cf. Proposition 3.1. This type of operator has appeared in the
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work of Komorowski and Papanicolaou (15) concerning the functional central
limit theorem for motions in incompressible Eulerian fields.

The crucial observation is that the transport operator possesses a
unique invariant density, see Lemma 3.2, which we use in the construction
of the regular invariant measure for the Lagrangian process, see (3.5).

In the final Section 4 we present the proof of Theorem 2.3. The proof
relies on the strong decorrelation properties of the transport operator, see
Lemma 4.1.

2. NOTATION AND FORMULATION OF THE MAIN RESULT

Let (W, d) be a Polish space with a Borel probability measure P. We
denote by B(W) the s-algebra of Borel sets on W and by E[ · ] the corre-
sponding mathematical expectation. Let N be the s-ring of P-null sets in
B(W), the completion of B(W). Unless otherwise stated, we will assume,
that any sub-s-algebra of B(W) contains N. For abbreviation sake we
write Lp :=Lp(T0), where T0 :=(W, B(W), P).

Let yt, x: WQ W, (t, x) ¥ R×Rd be a group of measure preserving
transformations, i.e., for any t, s ¥ R, x, y ¥ Rd and A ¥B(W), yt, x p ys, y=
yt+s, x+y, yt, x(A) ¥B(W) and P p yt, x=P. We suppose that u: WQ Rd is a
random vector over T0 satisfying

Eu=0. (2.1)

The Eulerian velocity field is defined as u(t, x; w) :=u(yt, x(w)). The
field is time stationary, space homogeneous and the assumption (2.1)
guarantees that it is of zero mean. We denote by Ub

a, −. [ a [ b [+.
the s-algebras generated by u(t, x), a [ t [ b, x ¥ Rd. We assume that

(FDT) (finite decorrelation time) there exists T > 0 such that for any
t ¥ R the s-algebras U t

−. and U+.
t+T are independent.

Finally, we suppose that the field possesses certain regularity both in
the topological and measure theoretic sense. Namely we assume that

(R) the field u( · , · ) is jointly Hölder continuous, of C1 class in the
spatial variable and there exists a deterministic constant C > 0 such that

sup
(t, x) ¥ R×R

d
[|u(t, x)|+|Nxu(t, x)|] [ C.

In addition, we suppose that all distributions of vectors (u(t1, x1),...,
u(tN, xN)), where N \ 1, (ti, xi) ] (tj, xj), i ] j ¥ {1,..., N}, are absolutely
continuous with respect to the Nd-dimensional Lebesgue measure.
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Theorem 2.1. Suppose that u( · , · ) is a velocity field satisfying (2.1),
FDT, R and the trajectory x(t), t \ 0 is given by (1.1) with o > 0. Then,
there exists a regular invariant probability measure Pg for the Lagrangian
velocity process gt :=u(t, x(t)), t \ 0.

As an immediate corollary from this theorem we obtain the following.

Corollary 2.2 (The Existence of the Stokes Drift). Under the
assumptions of Theorem 2.1 the limit

vg= lim
t ‘+.

x(t)
t

exists P éW a.s. and is a deterministic vector equal to > u(w) Pg(dw).

In addition, we have also the following result.

Theorem 2.3 (The Existence of the Effective Diffusivity). Under
the assumptions of Theorem 2.1 the limit

Dg= lim
t ‘+.

1
t
E éM{(x(t)− vgt) é (x(t)− vgt)}

exists. This matrix is called the effective diffusivity of the medium.

Remark. One can also show that the laws of the scaled trajectories

x̃e(t) :=e 5x 1
t
e2
2− vg

t
e2
6 , t \ 0

over C([0,+.); Rd) converge weakly, as e a 0, to a Wiener measure with
the co-variance matrix Dg. The proof of this fact can be routinely
concluded from the estimates similar to those obtained in Section 4 but we
shall not pursue this task in the present article. L

3. THE PROOF OF THEOREM 2.1

3.1. Transport Operator

According to Lemma A.1 of Appendix A below the conditions FDR
and R together guarantee that (U t

−.) admits a factorization in the follow-
ing sense. There exists a filtration of s-algebras R t, t \ 0 such that for any
t \ 0 we have U t

−.=U0
−. éR t. The latter means that R t is independent of
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U0
−. and they both generate U t

−.. In addition, there exists T > 0, for which
U+.
T …R, where R :=J.

t=0 R
t. Let T2 :=(W, U0

−., P) and T3 :=(W, R, P).
The aforementioned factorization implies the existence of a linear operator
Z: L1(T0)Q L1(T2 éT3) such that

(Z1) >W >W ZF(w, wŒ) P(dw) P(dwŒ)=>W F(w) P(dw), for all F ¥

L1(T0),

(Z2) ZF \ 0, F \ 0, Z1=1,

(Z3) Z(FG)=ZFZG, for all F, G ¥ L.(T0),

(Z4) ZF(w, wŒ)=F(w) and ZG(w, wŒ)=G(wŒ) for all F ¥ L1(T0),
G ¥ L1(T3)

(Z5) ZF is G0 éR t-measurable if F is U t
−.-measurable, for any

t \ 0.

We denote

pw, wŒ(s, x; t, y) :=(Zp•(s, x; t, y))(w, wŒ),

where pw(s, x; t, y) is the transition of probability density corresponding to
the diffusion described by (1.1).

The transport operator Q: L1(T0)Q L1(T0) is defined as

QF(wŒ)=F
R
d
F
W

pw, wŒ(−T, −y; 0, 0) F(y−T, −yw) P(dw) dy. (3.1)

This type of operator has been considered in the context of incompressible
environments in ref. 15, cf. also ref. 16 where a version of this operator
for random walks in random environments appears. We recall that Q pre-
serves densities, i.e., for any F \ 0 with > F dP=1 we have QF \ 0 with
> QF dP=1. This fact follows from the application of Proposition 3.1
below for G — 1.

The key property of the transport operator is contained in the follow-
ing proposition. Among others it explains the terminology used for Q.

Proposition 3.1. Suppose thatF ¥ L1(T2) andG is bounded andU+.
0 -

measurable. Then, for any t \ T andk: RdQ R bounded and measurable

FM[ G(yt, x(t)(w)) k(x(t)−x(T)) ] F(w) P(dw)

=FM[ G(yt−T, x(t−T)(w)) k(x(t−T)) ] QF(w) P(dw).
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Proof. Let us denote by xws, x(t; s), t \ s, (w, s) ¥ W×S a diffusion
described by (1.1) starting at time s from x for a given w and let zw, wŒs, x (t) :=
(Zx•s, x(t))(w, wŒ). Also, we identify xws, x(t; s)=xs, x(t; s, w). We adopt the
convention of omitting the subscripts when s=0, x=0.

Suppose that N \ 1 is an integer, 0 [ t1 [ · · · [ tN, x1,..., xN ¥ R,
G1,..., GN: RQ R are bounded and measurable. We can write then, with M
the expectation with respect to measure W, that

FM 5D
N

i=1
Gi(u(t+ti, xi+xw(t); w))6 k(x(t)−x(T)) F(w) P(dw)

=FFM 5D
N

i=1
Gi(u(t+ti, xi+zw, wŒ(t); wŒ))6

×k(zw, wŒ(t)− zw, wŒ(T)) F(w) P(dw) P(dwŒ)

=FFFF 5D
N

i=1
Gi(u(t+ti, xi+zw, wŒ(T; s)

+xT, 0(t; sŒ, y0, zw, wŒ(T; s)(wŒ)); wŒ))6

×k(xT, 0(t; sŒ, y0, zw, wŒ(T; s)(wŒ))) F(w) P(dw) P(dwŒ) W(ds) W(dsŒ).
(3.2)

The last equality following from the fact that u(t, · ) are R measurable for
t \ T. Using stationarity of the environment we can rewrite the utmost
right hand side of (3.2) as

FFFF 5D
N

i=1
Gi(u(t+ti, xi+xT, 0(t; sŒ, y0, zw, wŒ(T; s)(wŒ)); y0, zw, wŒ(T; s)(wŒ)))6

×k(xT, 0(t; sŒ, y0, zw, wŒ(T; s)(wŒ))) F(w) P(dw) P(dwŒ) W(ds) W(dsŒ)

=FFF
R
d
M 5D

N

i=1
Gi(u(t+ti, xi+xy0, z(wŒ)T, 0 (t); y0, z(wŒ)))6

×k(xy0, z(wŒ)T, 0 (t; y0, z(wŒ))) pw, wŒ(0, 0; T, z) F(w) P(dw) P(dwŒ) dz

=FM 5D
N

i=1
Gi(u(t+ti−T, xi+x(t−T))) k(x(t−T))6 QF dP L
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3.2. The Construction of the Invariant Measure

We start with the following.

Lemma 3.2. There exists an invariant density for Q, i.e., such
Hg \ 0 that >W Hg dP=1 and QHg=Hg. Moreover, there exist a constant
c ¥ (0, 1) such that for any F ¥ L1(T2)

F
W

:QnF(w)−Hg(w) F
W

F(w) P(dw) : P(dw) [ cn, -n \ 1. (3.3)

c does not depend on F.

Proof. From the classical Gaussian estimates of heat kernels, see
e.g., [17, Theorem 5’, p. 114 and Theorem 7’, p. 116], there exist positive
constants c1 and c2 such that for any s < t and x, y ¥ Rd, w, wŒ ¥ W

pw, wŒ(s, x; t, y) \
c1

(t−s)
d
2
exp 3−|x−y|2

t−s
c2 4 .

Therefore, for any F \ 0

QF(wŒ)= F
Rd

F
W

pw, wŒ(−T, −y; 0, 0) F(y−T, −yw) P(dw) dy

\
c1
T

d
2
F
R
d
F
W

exp 3−c2 |y|
2

T
4 F(w) P(dw) dy

=: C(T) F
W

F(w) P(dw) (3.4)

for some positive C(T). Using Theorem 5.6.2 of ref. 18 we conclude the
existence of an invariant density for Q. Moreover, we conclude from (3.4)
that for any F ¥ L1(T2) such that > F dP=0 we have

QF+\ (F+, 1)L2 C(T) and QF− \ (F−, 1)L2 C(T).

Using the fact that (F+, 1)L2=(F−, 1)L2=1/2 ||F||L1 we conclude that,

||QF||L1 [ (1−C(T)/2) ||F||L1

and (3.3) follows. L

642 Komorowski and Krupa



Define Pg(dw) :=hg(w) P(dw), where

hg(w) :=
1
T
F
0

−T
F
R
d
pw(t, y; 0, 0) Hg(yt, yw) dt dy. (3.5)

We show that Pg is a regular invariant measure. Choose 0 < t1 < t2 < · · ·
< tn, x1,..., xn ¥ Rd and f1, f2,..., fn: RdQ R bounded measurable functions.
Then, for any h \ 0,

F
W

D
n

i=1
fi(u(ti+h, xi+x(ti+h))) Pg(dw)

=
1
T
F
W

F
T

0
D
n

i=1
fi(u(ti+h+s, xi+x(ti+h+s))) Hg(w) ds P(dw).

(3.6)

Thanks to (3.3) we conclude that, the right hand side of (3.6) equals

lim
NQ.

1
NT

C
N−1

n=0
F
W

F
T

0
D
n

i=1
fi(u(ti+h+s, xi+x(ti+h+s))) Qn1(w) ds P(dw).

Proposition 3.1 allows us to rewrite this expression in the form

lim
NQ.

1
NT

C
N−1

k=0
F
T

0
F
W

D
n

i=1
fi(u(ti+h+s+kT, xi+x(ti+h+s+kT))) ds P(dw)

= lim
NQ.

1
NT

F
W

F
NT+h

h
D
n

i=1
fi(u(ti+s, xi+x(ti+s))) ds P(dw)

= lim
NQ.

1
NT

F
W

F
NT

0
D
n

i=1
fi(u(ti+s, xi+x(ti+s))) ds P(dw). (3.7)

Repeating now calculations done in (3.6) and (3.7) in the reverse order we
get that the utmost right hand side of (3.7) equals

F
W

D
n

i=1
fi(u(ti, xi+x(ti))) Pg(dw)

and the stationarity follows. It is clear that Pg is equivalent to P. The only
point that remains yet to be proven is ergodicity of Pg éW.
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3.3. The Proof of Ergodicity

Suppose that A is a Borel subset of C([0,+.); R) as specified in the
definition E and B ı C([0,+.); R) is Mt measurable. Here Mt is the
canonical filtration on C([0,+.); R). Then,

FM1A(g•(w, · )) 1B(g•(w, · )) Hg(w) P(dw)

=FM1A(ht+nT(g•(w, · ))) 1B(g•(w, · )) Hg(w) P(dw)

=FFF 1A(hnT(g•(yt, xw(t; s)(w), sŒ)))

×1B(g•(w, s)) Hg(w) P(dw) W(ds) W(dsŒ), (3.8)

with the last equality following from the strong Markov property and
stationarity of the environment. Using temporal stationarity of the envi-
ronment we infer that the utmost right hand side of (3.8) is equal to

FFF 1A(hnT(g•(y0, xw−t, 0(0; s)(w), sŒ)))

×1B(g•(y−t, 0(w), s)) Hg(y−t, 0(w)) P(dw) W(ds) W(dsŒ)

=FF
R
M1A(hnT(g•(y0, z(w), · ))) F0(w, z) p

w(−t, 0; 0, z) P(dw) dz,

with

F0(w, z) :=M[1B(g•(y−t, e(w), · )) Hg(y−t, 0(w)) | x
w
−t, 0(0)=z]

U0
−. éB(R)-measurable. Using stationarity of the environment in the z

variable we obtain that the left hand side of (3.8) equals

FM1A(hnT(g•(w, · ))) F(w) P(dw),

with

F(w) :=F
R
F0(y0, −z(w), z) py0, −z(w)(−t, 0; 0, z) dz
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U0
−.-measurable. Applying Proposition 3.1 we conclude that the utmost

right hand side of (3.8) equals

FM1A(g•(w, · )) Q
nF(w) P(dw). (3.9)

Letting n ‘+. we obtain, thanks to Lemma 3.2,

FM1A(g•(w, · )) 1B(g•(w, · )) Hg(w) P(dw)

=FM1A(g•(w, · )) Hg(w) P(dw) FM1B(g•(w, · )) Hg(w) P(dw)

for any B ¥Mt, t \ 0. Hence

FM1A(g•(w, · )) Hg(w) P(dw)=5FM1A(g•(w, · )) Hg(w) P(dw)6
2

,

which, thanks to strict positivity of Hg, proves that Pg éW[g• ¥ A]=0
or 1. L

4. THE PROOF OF THEOREM 2.3

Let

di, j(t) :=
1
t
F
t

0
F
s

0
EM[ũi(s, x(s)) ũj(s1, x(s1))] ds ds1,

ai, j(t) :=
1
t
F
t

0
EM[ũi(s, x(s)) wj(s)] ds,

where ũ=(ũ1,..., ũd) :=u− vg, with vg=(v1, g,..., vd, g) the Stokes’ drift
defined in Corollary 2.2. Using Itô formula we obtain

EM 5(xi(t)−vi, gt)(xj(t)−vj, gt)
t

6

=di, j(t)+dj, i(t)+`2o (ai, j(t)+aj, i(t))+odi, j.

The first part of the theorem is therefore a conclusion from the following
lemma.
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Lemma 4.1. The following limits exist

ai, j := lim
t ‘+.

ai, j(t), (4.1)

di, j := lim
t ‘+.

di, j(t), i, j=1,..., d. (4.2)

Proof of (4.1). We prove first that limn ‘+. ai, j(nT) exists for each
i, j=1,..., d. Note that

ai, j(nT)=
1
nT

F
T

0
EM[ũi(s, x(s)) wj(s)] ds

+
1
nT

F
nT

T
EM[ũi(s, x(s)) [wj(s)−wj(T)]] ds

+
1
nT

F
nT

T
EM[ũi(s, x(s)) wj(T)] ds. (4.3)

The middle term on the right hand side of (4.3) equals, thanks to Proposi-
tion 3.1 and spatial homogeneity of the field,

1
nT

F
(n−1) T

0
EM[ũi(s, x(s)) wj(s) Qk1] ds.

Repeating this procedure n times we arrive at

ai, j(nT)=
1
nT

C
n

k=0
F
T

0
EM[ũi(s, x(s)) wj(s) Qk1] ds

+
1
nT

C
n−1

k=0
F
(n−k) T

T
EM[ũi(s, x(s)) wj(T) Qk1] ds.

Using Lemma 3.2 we obtain that ai, j(nT) is, up to a term of order
O(n−1/2), equal to

F
T

0
EM[ũi(s, x(s)) wj(s) Hg] ds

+
1
nT

C
n−1

k=0
F
(n−k) T

T
EM[ũi(s, x(s)) wj(T) Hg] ds. (4.4)
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However, for any integer r \ 1 and s ¥ [rT, (r+1) T]

EM[ũi(s, x(s)) wj(T) Hg]=EM[ũi(s−rT, x(s−rT)) Q r−1Yj]

for

Yj(w) :=F
R
d
Y (0)
j (y, y−T, −y(w)) p

w(−T, −y; 0, 0) dy,

with Y (0)
j (y, w) :=M[wj(T) Hg(w) | x(T)=y]. With

Zj :=C
+.

r=0
Q r 1Yj−Hg F Yj dP2 . (4.5)

We can write that in the limit as n ‘+. the expression in (4.4) equals

F
T

0
EM[ũi(s, x(s)) wj(s) Hg] ds+F

T

0
EM[ũi(s, x(s)) Zj] ds

and (4.1) follows. We have used here the fact that >T0 EM[ũi(s,
x(s)) Hg] ds=0.

Proof of (4.2). As in the previous part of the proof it suffices to
show that the limit limn ‘+. di, j(nT) exists for each i, j=1,..., d. Note that
di, j(nT)=In+IIn, where

In :=
1
nT

C
n

k=1
C
k−1

m=1
F
kT

(k−1) T
F
mT

(m−1) T
EM[ũi(s, x(s)) ũj(s1, x(s1))] ds ds1

and

IIn :=
1
nT

C
n

k=1
F
kT

(k−1) T
F
s

(k−1) T
EM[ũi(s, x(s)) ũj(s1, x(s1))] ds ds1.

Thanks to Proposition 3.1 we can rewrite In as being equal to

1
nT

C
n−1

m=1
C
n

k=m+1
F
(k−m) T

(k−m−1) T
F
T

0
EM[ũi(s, x(s)) ũj(s1, x(s1)) Qm−11] ds ds1.

(4.6)

Using Lemma 3.2 we conclude that the expression in (4.6) equals, up to a
term of magnitude o(1), when n ‘+.,

1
nT

C
n−1

m=1
C
n−1

k=m+1
F
(k−m+1) T

(k−m) T
F
T

0
EM[ũi(s, x(s)) ũj(s1, x(s1)) Hg] ds ds1.

(4.7)
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Let Yj :=>T0 ũj(s1, x(s1)) Hg ds1 and Zj(w, y) :=M[Yj | x(T)=y].
Note that Zj: W×RdQ R is UT

0 éB(Rd)-measurable.
We can rewrite (4.7) as being equal to

1
nT

C
n−1

m=1
C

n−m−1

k=0
F
(k+1) T

kT
EM[ũi(s, x(s)) Ỹj] ds, (4.8)

with

Ỹj(w) :=F
R
d
pw(−T, y; 0, 0) Zj(y−T, y(w), y) dy, (4.9)

a U0
−.-measurable random variable. Thanks to Lemma 3.2 we conclude

that

lim
n ‘+.

In= lim
n ‘+.

1
nT

C
n−1

m=1
C

n−m−1

k=0
F
T

0
EM[ũi(s, x(s)) QkỸj] ds

=F
T

0
EM[ũi(s, x(s)) Zj] ds, (4.10)

with Zj :=;+.
k=0 Q

kỸj.
On the other hand, IIn equals to

1
nT

C
n

k=1
F
T

0
F
s

0
EM[ũi(s, x(s)) ũj(s1, x(s1)) Qk−11] ds ds1.

which, as n ‘+., tends to

F
T

0
F
s

0
EM[ũi(s, x(s)) ũj(s1, x(s1)) Hg] ds ds1. L

APPENDIX A. THE FACTORIZATION OF THE VELOCITY FIELD

Suppose that u(t, x), (t, x) ¥ R×Rd is a time space stationary random
field over T0 and let Ut be the natural filtration of s-algebras correspond-
ing to u, i.e., the s-algebra Ut is generated by {u(s, x), x ¥ Rd, s [ t}. Let U t

be the s-algebra generated by {u(t, x), x ¥ Rd, t [ s}. Assume also that the
assumption FDT holds.

Since Ut are countably generated s-algebras for all t ¥ R (in the sense
of definition given in [19, p. 63], there exist random variables tt, such that
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Ut=s(tt)KN for all t ¥ R. Recall here that N is the s-ring of P-null sets
in B(W). Set

Ftt[A | t0(w)]

:=P[[tt ¥ A] 2N |U0](w), for any A ¥B(R), N ¥N.

Define the conditional probability measures P[ · |U0] :=Ftt[ · | t0]
We assume that

(AC) for any finite set I …Q×Qd the random variables u(t, x; · ),
(t, x) ¥ I have absolutely continuous distributions with respect to the
product of #I copies of the Lebesgue measures. Here Q denotes the set of
rational numbers.

Suppose that A, B and C are sub s-algebras of B(W). We say that B
and C factor A, which is denoted by A=B é C, if A is generated by B
and C and they are independent.

Lemma A.1. Under the assumption AC (U t
−.) admits a factoriza-

tion, i.e., there exists a filtration of s-algebras R t, t \ 0 such that for any
t \ 0 we have U t

−.=U0
−. éR t. In addition, if FDT holds then there exists

T > 0, for which U+.
T …R, where R :=J.

t=0 R
t.

Proof. By virtue of Theorem 5 of ref. 19 we know that V0 factors Vt,
(t > 0) provided that the conditional probabilities P[ · |V0](w) are
atomless on Vt, P-a.s. in w. Recall here that a set A ¥S, where (X,S, m) is
a certain measure space, is called an atom, if for any B ¥S, B … A, such
that m[B] < m[A], m[B]=0. Assume that P[ · |V0](w) possesses atoms in
Vt on a set of w-s having a positive measure P. For some N \ 1 there exists
a set L ¥V0 such that the conditional distribution function Ftt (x | t0(w)) :=
Ftt[tt < x | t0(w)], x ¥ R has a jump of size not less than 1

N in the interval
[−N, N] for P-a.s. w ¥ L. Let f(w) be the minimum of such jump sites in
[−N, N] for a fixed w. Then A :=[w ¥ L: tt(w)=f(w)] is an atom with
P[A |V0](w) \

1
N for P-a.s. w. Let V (k)

t denote the sub-s-algebra of Vt
generated by the sites |x| [ k, x ¥ ( 12k Z)

d. Thanks to AC, P[ · |V (k)
0 ]

defined on V (m)
t are atomless for any k, m \ 1, P-a.s. Let Ak be a count-

able algebra of sets such that V (k)
t =Ak KN and A :=J.

k=1 Ak K{A, Ac},
with Ac :=W0A.

The martingale a.s. convergence theorem yields that

lim
kQ.

P[C |V (k)
0 ]=P[C |V0] for all C ¥A, P-a.s.
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For an arbitrary e > 0 there exists Ã ¥V (m)
t such that P[A¦Ã] [ e. Then

P[A¦Ã]=F P[A¦Ã |V0] dP \ F lim inf
kQ.

P[A¦Ã |V (k)
0 ] dP.

Choosing a suitable positive e (for example e= 1
1000N ), for an w ¥ L we can

find a sequence (kl) … (k) such that

P[A¦Ã |V (kl)
0 ](w) [

1
128N

.

Measures P[ · |V (kl)
0 ](w) are atomless on Vm

t (m \ 1). Therefore one can
find B (1)

1 , B
(2)
1 ¥V(m)

t such that B (1)
1 5 B (2)

1 =”, B (1)
1 , B

(2)
1 … Ã and

1
16N

< P[B(i)
1 |V(k1)

0 ](w) <
1
8N

, i=1, 2.

We can construct also descending families of sets (B (i)
p ), p \ 1, i=1, 2 such

that
1

16N
< P[B (i)

p |V (kl)
0 ](w) <

1
8N

, i=1, 2, l=1,..., p.

Set B (i) :=4p \ 1 B (i)
p , i=1, 2. Then

1
16N

< lim
pQ.

P[B (i)
p |V (kl)

0 ](w)=P[B (i) |V (kl)
0 ](w), i=1, 2.

This implies that, in fact,

1
16N

< P[B (i)
p |V (kl)

0 ](w) <
1
8N

, -l, p ¥N, i=1, 2.

Thus, for all p ¥N

1
16N

[ P[B(i)
p |V0](w), i=1, 2,

and, in consequence,

1
16N

[ P[B (i) |V0](w), i=1, 2.

For i=1, 2 put Ai :=B(i) 5 A. We have P[Ai |V0](w) \
1
32N and A1 5 A2

=”. This contradicts the assumption that A is an atom. L
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